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ARO PROPOSAL NO. 50556-MA, ARO AWARD W911NF-08-1-0530
SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS
during the Period September 26, 2008–December 31, 2011

This project was on stochastic semidefinite programming, a class of new stochastic optimization
problems proposed by the PI and his former graduate student Yuntao Zhu [2]. The motivation
to propose stochastic semidefinite programs (SSDP’s) arose as a result of the following line of ar-
gument. Semidefinite programs (DSDP’s), defined using deterministic data, have been the focus
of intense research during the past 15 years. DSDP’s generalize (deterministic) linear programs
(DLP’s). In particular, the decision variable of a DLP is a nonnegative vector, while the decision
variable of a DSDP is a positive semidefinite matrix. The generalization of DLP’s to DSDP’s
remarkably increases the applicability of DLP’s. Indeed, many optimization problems that have
been considered to be intractable prior to the prominence of DSDP’s have been formulated and
solved as DSDP’s. There are efficient algorithms for solving DSDP’s, and they are almost exclu-
sively based on interior point concepts.

An equally applicable extension of DLP’s are stochastic linear programs (SLP’s) with recourse.
SLP’s are an important (but not the only) way to deal with uncertainty in data defining DLP’s,
and as in DLP’s the decision variable in a SLP is a nonnegative vector. There are efficient interior
point and noninterior point algorithms for solving SLP’s.

Since DSDP’s (with deterministic data and positive semidefinite matrix decision variables)
and SLP’s (with stochastic data and nonnegative vector decision variables) are both very useful
extensions of DLP’s, it is desirable to seek an extension that combines them. SSDP’s defined
in [2] are such an extension (with stochastic data and positive semidefinite decision variables) of
DLP’s.

The relationships among DLP’s, DSDP’s, SLP’s and SSDP’s indicated above are illustrated
in Figure 1 in page D-9 of the Proposal 50556-MA.

In very broad terms the objective of this project was to investigate applications of SSDP’s,
and to derive, analyze and computationally test algorithms for SSDP’s. Specific tasks are stated
in pages D-18 and D-19 of the Proposal 50556-MA.

Our descriptions here are brief and semitechnical, and use symbols and terms defined in
the Proposal 50556-MA. Technical reports that have been submitted to ARO, and also to peer-
reviewed journals for consideration for publication, provide precise technical descriptions.

While performing Task 1, it became apparent that a new alternative to SSDP for handling the
uncertainty in data defining DSDP’s may be formulated. We begin by describing this alternative
to SSDP’s.

(a) Accomplishment 1
Chance-constrained linear programming (CCLP) [10, 11, 14, 15] is a prominent alternative
to SLP for handling uncertainty in data defining DLP’s. Briefly, a constraint requiring
decision variable x ∈ R

n to be chosen such that aTx ≤ b makes sense when data a ∈ R
n

and b ∈ R are deterministic. However, when a and b are random such a constraint loses
its meaning, and in CCSLP it is replaced by a chance-constraint P (aTx ≤ b) ≥ p which
requires that x be chosen so that the probability of the event {x ∈ R

n : aTx ≤ b} is at least a
prescribed value p ∈ (0, 1). We have developed a class of new optimization problems termed
chance-constrained semidefinite programs for handling uncertainty in DSDP’s. CCSDP’s
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are related to DSDP’s in the same way that CCLP’s are related to DLP’s, and CCSDP is
an alternative to SSDP for handling uncertainty in data defining DSDP’s. See [3] for details.

In order to demonstrate the applicability of SSDP, in [2], the authors showed how an SSDP
may be formulated for dealing with the uncertainty in data defining the minimum-volume
covering ellipsoid problem [18, 16]. As indicated in [2], a concrete application of this SSDP
model of the random minimum-volume covering ellipsoid problem is in optimally tracking
and destroying randomly moving targets. In [3, §4], we show how a CCSDP model can
also be formulated to handle the uncertainty in data defining the minimum-volume covering
ellipsoid problem. Further, we show how this CCSDP model of the random minimum-
volume covering problem leads to a different model for optimally tracking and destroying
randomly moving targets.

(b) Accomplishment 2
This is based on Task 1 of the proposal. This task is on identifying applications where SSDP
and CCSDP models can be developed to deal with uncertainty not captured by existing
approaches. We have identified three such applications and developed corresponding new
SSDP and CCSDP models. Specifically, we have developed the following SSDP and CCSDP
models:

(i) an SSDP model for determining routing strategies in mobile ad-hoc networks;

(ii) an SSDP model and a CCSDP model for designing RC circuits;

(iii) an SSDP model and a CCSDP model for structural optimization;

(iv) an SSDP model for portfolio optimization under risk constraints. This is joint work
with doctoral student Baha Alzalg supported by this grant.

Along with the SSDP and CCSDP models for the random minimum-volume covering ellip-
soid problem developed in [2] and [3] respectively, we thus have new models for capturing
uncertainty in five application areas. Complete details of the SSDP an CCSDP models in
the first four of these five areas are given in [4].

(c) Accomplishment 3
This is based on Task 2. The purpose of this task was to develop and analyze algorithms for
the generic SSDP with finite Ω and large K. We have developed such a class of algorithms
with the following features.

(i) The class of algorithms is of decomposition type as described in Part (2.2) of Task 2
in page D-18 of Proposal 50556-MA. It decomposes the large scale problem into K
smaller independent subproblems. Thus implementations of members of the class can
utilize parallel processing naturally.

(ii) It is based on the volumetric barrier function [17, 1]. It is known that interior point
algorithms based on the volumetric barrier perform better than comparable algorithms
based on the standard logarithmic barrier. It is due to this reason that our derivation
of algorithms was based on the volumetric barrier. However, analyses of algorithms
based on the volumetric barrier are technically much more challenging than analyses
of algorithms based on the logarithmic barrier.

(iii) We have analyzed the class of algorithms and proved convergence and polynomial
complexity of certain members of the class.
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Complete details of (i), (ii) and (iii) may be found in [5].

(d) Accomplishment 4
This is based on work in Task 2. The purpose of this task was to develop and analyze
algorithms for the generic SSDP with finite Ω and large K, the case that is useful in solving
problem instances that arise in applications. In this case, the generic SSDP reduces to a
large-scale DSDP with very special structure. Therefore, it is possible to solve the DSDP
by applying a general-purpose algorithm for DSDP’s. However, when the number of real-
izations K is large, this is prohibitively expensive.
More efficient algorithms can be derived by exploiting the special structure in the DSDP
that the generic SSDP reduces to when Ω is finite and K is large. In Task 2 it was proposed
(see page D-18 of the Proposal 50556-MA) to develop such efficient algorithms in two differ-
ent ways: by tailoring general purpose DSDP algorithms to take the special structure into
account; and by generalizing decomposition algorithms for SLP’s such as the one in [23].
Accomplishment 3 was on developing a class of algorithms of the latter kind (see [5]). In
particular, in [5] it was shown that the computational complexity (in terms of arithmetic
operations) of the long-step members of the class of algorithms is O(K2). This is much
smaller than the complexity of O(K5) of corresponding long step algorithms that ignore the
special structure of SSDP’s with finite Ω and large K.
This accomplishment is on deriving two classes of algorithms of the first kind, and proving
their convergence and polynomial complexity. The first class is based on the homogeneous
self-dual algorithms [12] for DSDP’s and extends the work of Berlelaar, Kouwenberg and
Zhang [9] for SLP’s to SSDP’s. The complexity of the long step members of the class of
algorithms is O(K2) in terms of arithmetic operations. Our class of algorithms has two
important features. First, being homogeneous self-dual algorithms, they have a standard
starting point, and if the problem is infeasible the algorithms will terminate indicating infea-
sibility. All interior point algorithms need a strictly feasible starting point, and in practice,
feasibility is assumed, and an initialization phase is used to find a suitable starting point.
The second feature of our algorithms is the possibility for organizing the computation of the
search direction (the most expensive part of the algorithm) into K smaller computations.
This feature allows easy distributed processing in implementations.
The second class of algorithms we have developed is based on the infeasible interior point
algorithms [13] for DSDP’s. The complexity (in terms of arithmetic operations) of the class
is O(K1.5) if the starting point is feasible or close to being feasible and O(K2) otherwise.
The most expensive computation of this class also naturally decomposes into K smaller
computations allowing distributed processing in implementations.

(e) Accomplishment 5
Much of the work in Tasks 1, 2, 3, 4 of the pages D-18, D-19 of the Proposal 50556-MA
assumes that Ω is finite leading to the formulation of SSDP’s in equation (14) of the proposal.
While this is almost always true in applications, the general formulation of the SSDP in
equations (11,12,13) of the proposal does not require this assumption. For example, it
may be the case that Ω is not finite and the probability distributions of random data is
continuous. In such cases one approximates the continuous probability distribution by a
discrete distribution with a finite number of realizations. It is then natural to repeat this
process with a sequence of distributions with increasing numbers of realizations converging
to the continuous probability distribution. This leads to the solution of a sequence of
problems of the form in equation (14) of the proposal, and questions on the convergence of
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the sequence of solutions to a solution to the original problem arise. For purposes such as
this, the general problem in equations (11,12,13) of the problem must be studied. These
theoretical questions that provide the foundations to Tasks 1, 2, 3, 4 are studied in the
doctoral dissertation of Mr. Limin Yang supported by this grant. Mr. Yang will have his
final doctoral examination in Summer 2012. This dissertation contains four chapters titled:

(i) Stochastic Semidefinite Programs: The Equivalent Convex Program

(ii) Stochastic Semidefinite Programs: The Solution Set

(iii) Stochastic Semidefinite Programs with Recourse: General Properties

(iv) Stochastic Semidefinite Programs with Recourse: On the Continuity of the Objective.

The results in these four chapters extend the results in [19, 20, 21, 22] for SLP’s to the case
of SSDP’s.

Accomplishment 6.
While working on Task 3 it became apparent to us that all applications of SSDPs that we
were aware of belong to a proper subclass of SSDPs that we termed Stochastic Second-Order
Cone Programs (SSOCPs). SSOCPs are obtained from SLPs by replacing linear inequalities
by second-order cone (SOC) inequalities, and SSDPs are obtained from SOCPs by replacing
SOC inequalities by linear matrix (LM) inequalities. Finally, replacing LM inequalities
by what we term symmetric cone (SC) inequalities we get stochastic symmetric programs
(SSPs). The hierarchy of problems SLPs, SSOCPs, SSDPs and SSPs have deterministic
counterparts, DLPs, DSOCPs, DSDPs and DSPs respectively. In applications, it is useful
to be able to restrict some variables to take integer values while others take real values as
usual. We refer to such problems as mixed integer (MI). The four problems DLPs, DSCOPs,
DSDPs and DSPs can have mixed integer counterparts DMILPs, DMISCOCPs, DMISDPs,
and DMISPs respectively. These relationships are illustrated in Figure 1. The boxes with
dashed boundaries represent new practically useful problems requiring significant work on
algorithms for their solution.

Accomplishment 7.
The discovery of SSOCPs led to another accomplishment. Second order problems use ℓ2

norm exclusively. In practical settings it may be necessary to use ℓp norms with p values
other than 2. It seems much of the of the present proposal could be extended to problems
that use ℓp norms with any p ∈ [1,∞). We refer to such problems as p-th order problems.
We then realized that it is possible to construct problems that are over the intersection of a
finite number of cones with different p values. We term these problems as multi-order cone
programs (SMOCPs). As in Accomplishment 1, we can have both deterministic and mixed
integer versions. This set of problem classes are illustrated in Figure 2.
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Figure 1: Conceptual relationships among optimization problems over symmetric cones and their
special cases.
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Figure 2: Conceptual relationships among the optimization problems over multi-order cones and
their special cases.

As in Figure 1, the boxes with dashed boundaries represent new classes of optimization prob-
lems. Modeling, algorithmic, and theoretical work based on the problems in boxes with dashed
boundaries would be suitable for projects following the present project.
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